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Abstract
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from VIX, a volatility index for the S&P 500 index return produced by the Chicago
Board Options Exchange (CBOE) using the so-called model-free volatility construc-
tion. Our model specification encompasses all mean-reverting stochastic volatility op-
tion pricing models with a constant-elasticity of variance and those allowing for price
jumps under stochastic volatility. Our approach is made possible by linking the latent
volatility to the VIX index via a new theoretical relationship under the risk-neutral
measure. Because option prices are not directly used in estimation, we can avoid the
computational burden associated with option valuation for stochastic volatility/jump
option pricing models. Our empirical findings are: (1) incorporating a jump risk factor
is critically important; (2) the jump and volatility risks are priced; and (3) the popular
square-root stochastic volatility process is a poor model specification irrespective of
allowing for price jumps or not.
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1 Introduction

The development of stochastic volatility models with jumps has come a long way in many
dimensions in recent recent years. The importance of incorporating jumps has long been
advocated in the empirical option pricing literature, such as Bakshi, Cao and Chen (1997),
Bates (2000), Chernov and Ghysel (2000), Duffie, Pan, and Singleton (2000), Pan (2002),
Eraker (2004), and Broadie, Chernov and Johannes (2006). Stochastic volatility being a
latent variable, however, poses a significant methodological challenge to model testing and
applications. In this paper, we devise an estimation method that conveniently extracts the
latent stochastic volatility from VIX, a volatility index provided by Chicago Board Options
Exchange (CBOE) for the S&P 500 index. The VIX index is based on forming a portfolio of
European options with a target maturity of 30 days. The value of such an option portfolio
has been shown in the model-free volatility literature to represent the risk-neutral expected
realized volatility over the horizon defined by the maturity of the option contracts in the
portfolio. Interestingly, we are able to derive a closed-form expression that further links
the risk-neutral expected realized volatility to the latent stochastic volatility for the class of
stochastic volatility models (with or without jumps) whose elasticity of variance is constant.
This new theoretical link between the VIX index and the latent stochastic volatility allows
us to in effect view the VIX index, after a proper transformation, as the latent stochastic
volatility. Consequently, the estimation task for a large class of stochastic volatility models
with or without jumps can be dramatically simplified.

The new theoretical link between the VIX index and the latent stochastic volatility has an
added benefit. Since the linking function depends on the volatility and jump risk premiums,
the values for these critical risk premiums can be inferred without directly using option
prices in estimation. This stands in sharp contrast to the existing estimation methods
in the literature that in one way or another requires of repeated option valuations under
some stochastic volatility/jump model. Our proposed estimation method thus avoids costly
numerical option valuations and significantly reduces the computational burden associated
with model testing and applications.

A joint consideration of the volatility and jump risk factors is expected to better capture
the dynamics of equity returns, which in turn better reconciles the theoretical model with
the observed volatility smile/smirk, and as a result, improves option valuation. However, the
empirical results in the literature appear to be mixed. Anderson, Benzoni and Lund (2002)
and Eraker, Johannes and Polson (2003) conclude that allowing jumps in prices can improve
the fitting for the time-series of equity returns. However, Bakshi, Cao and Chen (1997),
Bates (2000), Pan (2002) and Eraker (2004) offer different and inconsistent results in terms
of improvement on option pricing. There is no joint significance in the volatility and jump
risk premium estimates in most cases. Broadie, Chernov, and Johannes (2006) provided one
plausible explanation for these diverse findings, which they attributed to the short sample
period and/or limited option contracts used in those papers. Practically speaking, using
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options over a wide range of strike prices over a long time span in estimation will quickly
create an unmanageable computational burden. Our approach of using the VIX index is a
joint estimation method suitable for the data sample over a long time span that can avoid
costly option valuations. In effect, the VIX index has summarized all critical information in
options over the entire spectrum of strike prices, and it is also informative about the time
series behavior of the latent stochastic volatility.

Our analysis is based on the maximum likelihood principle applied to the transformed
data setting as proposed by Duan (1994). The derived link between the VIX index and
the latent stochastic volatility serves as the critical transformation from the unobserved risk
factor (the latent stochastic volatility) to the observed VIX (the value of an option portfolio).
We conduct the maximum likelihood estimation and inference on the observed S&P 500 and
VIX index values from the first trading day of 1990 to the last trading day of 2006. Our
empirical findings are: (1) incorporating a jump risk factor is critically important; (2) the
jump and volatility risks are priced; and (3) the popular square-root stochastic volatility
process is a poor model specification irrespective of allowing for price jumps or not.

The balance of this paper is organized as follows. In section 2, we propose under the
physical probability measure a constant-elasticity-of-variance stochastic volatility model that
allows jumps in the price. Then we proceed to derive the corresponding system under a risk-
neutral pricing measure. The critical link between the VIX index and the latent volatility is
also established there. In section 3, the likelihood function for the model is then derived and
presented. The empirical results are reported and discussed in Section 4. Some concluding
remarks follow in Section 5.

2 A stochastic volatility model with jumps in asset

prices

The asset price is assumed to follow a jump-diffusion model and the asset volatility is allowed
to be stochastic. Specifically, the dynamics under the physical probability measure P are

d ln St =

[
r − q + δSVt − Vt

2

]
dt +

√
VtdWt + JtdNt − λµJdt (1)

dVt = κ(θ − Vt)dt + vV γ
t dBt (2)

where Wt and Bt are two correlated Wiener processes with the correlation coefficient equal to
ρ; Nt is a Poisson process with intensity λ and independent of Wt and Bt; Jt is an independent
normal random variable with mean µJ and standard deviation σJ . Note that dWt and JtdNt

have respective variances equal to dt and λ(µ2
J +σ2

J)dt. Thus, Vt +λ(µ2
J +σ2

J) is the variance
rate of the asset price process. The price and volatility processes are dependent through
two correlated diffusive terms – Wt and Bt. In the above equation, the risk-free rate, the
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dividend yield and the asset risk premium are r, q and δS, respectively. The term λµJdt is
used to center the Poisson innovation so that JtdNt − λµJdt has its mean equal to 0.

The specification in equations (1) and (2) contains many well-known stochastic volatility
models with or without jumps. If there are no jumps (i.e., λ = 0), then the Hull and White
(1987) or Heston (1993) stochastic models follow by further setting γ to 1 or 1/2.1 If jumps
are allowed, the price innovation becomes that of Bates (2000) and Pan (2002). Note that the
asset return’s jump size is not related to volatility and thus does not exhibit any dynamic
behavior. One can introduce a dynamic feature to the jump component by, for example,
making λ time-varying. The joint price-volatility model is more general than that that of
Bates (2000) and Pan (2002) because their specification corresponding to the special case of
γ = 1/2, i.e, a square-root volatility process.

For option pricing, we follow the standard approach of using the risk-neutral pricing
idea, which implies that the discounted asset price process is a martingale with respect to
an equivalent martingale measure, Q. Note that the asset price is subject to jumps and the
volatility is not a traded asset. Either feature makes the market incomplete. Although no
arbitrage implies the existence of an equivalent martingale measure, but it is not unique.
The choice made below is consistent with that of Hull and White (1987), Heston (1993),
Bates (2000) and Pan (2002) for the volatility risk premium in terms of dealing with the
incompleteness due to stochastic volatility. To deal with jumps in both price and volatility,
we follow that of Bates (2000) and Pan (2002) to restrict to our attention to the equivalent
martingale measures under which the jump dynamic remains in the same form but the jump
intensity and the mean of the jump size are allowed to differ from those under the physical
measure, i.e., from λ to λ∗ and from µJ to µ∗J . This can be accomplished by adopting a
particular form for the pricing kernel. We refer readers to Appendix A of Pan (2002) for
details. The corresponding system under measure Q becomes

d ln St =

[
r − q − Vt

2
+ λ∗

(
µ∗J − eµ∗J+

σ2
J
2

)]
dt +

√
VtdW ∗

t + J∗t dN∗
t − λ∗µ∗Jdt (3)

dVt = (κθ − κ∗Vt) dt + vV γ
t dB∗

t (4)

where κ∗ = κ + δV and B∗
t = Bt + δV

v

∫ t

0
V 1−γ

s ds with δV being interpreted as the volatility
risk premium. W ∗

t and B∗
t are two correlated Wiener processes under measure Q and their

correlation coefficient remains at ρ; N∗
t is a Poisson process with intensity λ∗ and independent

of W ∗
t and B∗

t ; J∗t is an independent normal random variable under measure Q with a new
mean µ∗J but its standard deviation remains unchanged at σJ . It can be easily verified by

Ito’s lemma that equation (3) leads to EQ
t

(
dSt

St

)
= (r − q)dt so that the expected return

under measure Q is indeed the risk-free rate minus the dividend yield.

1The Hull and White (1987) model was originally formulated without the volatility reversion feature (i.e.,
θ = 0). In this paper, we interpret that model as one with volatility reversion. Note that a specification
without volatility reversion will have quite poor empirical performance.
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Note that Vt + λ∗(µ∗2J + σ2
J) becomes the variance rate of the asset price process under

measure Q, which may be different from Vt + λ(µ2
J + σ2

J) when jumps are allowed. An
interesting consequence of introducing jumps is that the local volatility of the asset return
is no longer invariant to the change of measures.

This complex stochastic volatility-jump model retains a useful feature; that is, we can
derive a closed-form expression for the risk-neutral expected cumulative variance over any
horizon. First, for any κ∗ 6= 0 and τ > 0,

EQ
t (Vt+τ ) =

κθ

κ∗
+

(
Vt − κθ

κ∗

)
e−κ∗τ . (5)

Thus, the risk-neutral expected cumulative variance becomes

∫ t+τ

t

EQ
t (Vs) ds =

κθ

κ∗

(
τ − 1− e−κ∗τ

κ∗

)
+

1− e−κ∗τ

κ∗
Vt. (6)

If κ∗ = 0, the corresponding formulas for equations (5) and (6) should be replaced with their
limiting results, which are κθτ and κθτ2

2
+ τVt, respectively. Moreover, equation (3) can be

used to obtain

EQ
t

(
ln

St+τ

St

)

= (r − q)τ − 1

2

∫ t+τ

t

EQ
t (Vs) ds +

∫ t+τ

t

λ∗EQ
t

(
µ∗J + 1− eµ∗J+

σ2
J
2

)
ds

=

[
r − q − λ∗

(
eµ∗J+

σ2
J
2 − (µ∗J + 1)

)]
τ − 1

2

∫ t+τ

t

EQ
t (Vs) ds. (7)

A well-known fact in the model-free volatility literature is that ln St+τ

St
can be replicated

by a portfolio of European options. First, define an option portfolio value at time t with its
component options expiring at time t + τ :

Πt+τ (K0, t + τ) ≡
∫ K0

0

Pt+τ (K; t + τ)

K2
dK +

∫ ∞

K0

Ct+τ (K; t + τ)

K2
dK. (8)

By the generic payoff expansion result of Carr and Madan (2000), we have

Πt+τ (K0, t + τ) =
St+τ −K0

K0

− ln
St

K0

− ln
St+τ

St

, (9)

which can in turn be translated to a relationship at time t as

erτΠt(K0, t + τ) =
Ft(t + τ)−K0

K0

− ln
St

K0

− EQ
t

(
ln

St+τ

St

)
. (10)
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where Ft(t + τ) denotes the forward price at time t with a maturity at time t + τ .
The CBOE introduced the new VIX index in 2003, intending to capture the risk-neutral

expected cumulative volatility; that is,

VIX2
t (τ) ≡ 2

τ
erτΠt(Ft(t + τ), t + τ). (11)

Applying equations (7) and (10), we establish a critical theoretical link:

VIX2
t (τ) = 2φ∗ +

1

τ

∫ t+τ

t

EQ
t (Vs) ds, (12)

where φ∗ = λ∗
(
eµ∗J+σ2

J/2 − 1− µ∗J
)
. If there are no jumps, then VIX2

t (τ) obviously equals the

standardized risk-neutral expected cumulative variance or the risk-neutral expected realized
variance over the horizon τ , which is a well-known result and serves as the theoretical basis
underlying the VIX index. The model-free realized volatility literature, such as Britten-
Jones and Neuberger (2000), Demeterfi, Derman, Kamal and Zhou (1999) and Jiang and
Tian (2004), in essence, deals with this relationship for generic models without jumps.

When there are jumps, VIX2
t (τ) becomes a jump-adjusted risk-neutral expected cumu-

lative variance over the horizon τ and it could be reduced to the standardized risk-neutral
expected cumulative variance or the risk-neutral expected realized variance only when both
µ∗J and σJ are small enough to justify that φ∗ is negligible. When the jump size is small,
the statement that the VIX index approximately equals the risk-neutral expected realized
variance was first made in Jiang and Tian (2004). Although the result pertaining to the re-
lationship between the VIX index and the risk-neutral expected realized variance is generic
to the stochastic volatility models, it is not true for models with jumps. The result in equa-
tion (2) serves a concrete counterexample. As to what the specific form of the relationship
applies, it will inevitably depend on how the jump model is specified.

The CBOE sets K0 = Ft(t + τ). Such a choice is not a theoretical necessity, however. If
one sets K0 = 0 (K0 = ∞), the option portfolio consists of only call (put) options. Arguably,
the CBOE’s choice is more natural because out-of-the-money options tend to be more liquid
contracts.

The operational reality is that one can never have a complete set of options. Therefore,
using a proxy becomes a must. The CBOE VIX index is based on approximating the right-
hand side of equation (8) using the available out-of-the-money S&P 500 index options. The
CBOE VIX index specifically targets the 30-day maturity. On any given day, the target
maturity is expected to be sandwiched by two adjacent maturities, τ l

t ≤ τu
t , and a linear

interpolation of two option portfolios is then used to represent the index. Let nl
t and nu

t be
the numbers of out-of-the-money options used in the CBOE approximation that correspond
to τ l

t and τu
t , respectively. To differentiate the CBOE VIX index from the theoretical VIX
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index, we denote the CBOE approximation by VIXt(τ
l
t , τ

u
t , nl

t, n
u
t ). Combining equations (6)

and (12) gives rise to

VIX2
t (τ

l
t , τ

u
t , nl

t, n
u
t ) ' VIX2

t (τ) =
κθ

κ∗

(
1− 1− e−κ∗τ

κ∗τ

)
+ 2φ∗ +

(
1− e−κ∗τ

)

κ∗τ
Vt. (13)

The above result shows that the CBOE VIX index can still be linked in closed-form to the
latent volatility, Vt, for this complex model with stochastic volatility and jumps, and thus
provides a simple way to deal with the estimation challenge posed by our inability to observe
the latent volatility. In fact, equation (13) gives rise to our econometric specification with
which the volatility and jump risk premiums can be estimated without actually performing
option valuation based on a specific option pricing model such as Pan (2002). Our approach
thus substantially simplifies the estimation task and avoids using option data directly.

Similar to an observation made in Pan (2002), λ∗ and µ∗J can be be separately identified.
Pan (2002) simply assumed λ∗ = λ. Equally acceptable is to assume µ∗J = µJ . Instead of
forcing an equality on a specific pair of parameters, we find it convenient to use a composite
parameter φ∗ to define the jump risk premium. Specifically, the jump risk premium is

regarded as δJ = φ∗−φ, where φ = λ
(
eµJ+σ2

J/2 − 1− µJ

)
. The jump risk premium is meant

to reflect the compensation term in the expected return for the jump risk. If the jump risk
is priced, the compensation term will change by the amount equal to δJ , which is induced
by changing from the physical probability measure P to the risk-neutral pricing measure Q.

The volatility and jump risk premiums along with other parameters can be estimated
using the summarized information about the option prices as reflected in the VIX index.
These parameter values can naturally be used to assess the performance of an option pricing
model, the general one or its special cases, on pricing individual options with different strike
prices and maturities.

3 The econometric specification

The log-likelihood function for the observed time series (ln St, VIXt) can be constructed using
the transformed data idea as in Duan (1994). In short, we can view the observed variable
VIXt as the transformed data of the latent volatility Vt. The log-likelihood function for
the observed data pair (ln St, VIXt) will then be composed of two components. The first
component is the standard log-likelihood function associated with a time series of (ln St, Vt)
by acting as if Vt could be observed. The second component deals with the transformation,
which turns out to be the logarithm of the Jacobian for the transformation. Of course, the
eventual expression contains the unobserved Vt, which needs to be replaced with its implied
value obtained via inverting VIXt at some parameter value. Since VIXt is observed and
fixed, Vt also becomes a function of the unknown parameters. Needless to say, the inversion
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must be unambiguous. Our model is clearly the case, because the relationship linking Vt to
VIXt in equation (13) is always invertible at all parameter values.

Denote the parameters by Θ = (κ, θ, λ, µJ , σJ , v, ρ, γ, δS, κ∗, φ∗). The observed data sam-
ple consists of N observations with each data point being denoted by Xti = (ln Sti , VIXti).

Let Ŷti(Θ) = (ln Sti , V̂ti(Θ)) where V̂ti(Θ) is the inverted value evaluated at parameter value
Θ according to equation (13).

Since our model has jumps, the conditional density function for Ŷti(Θ) will be a Poisson
mixture of the bivariate normal densities in the following form:

f
(
Ŷti(Θ)

∣∣Ŷti−1
(Θ); Θ

)
=

∞∑
j=0

e−λhi(λhi)
j

j!
g (wti(j, Θ);0,Ωti(j, Θ)) , (14)

where

wti(j, Θ) =


 ln

(
Sti

Sti−1

)
−

[
r − q + (δs − 1

2
)V̂ti−1

(Θ)
]
hi − (j − λhi)µJ

V̂ti(Θ)− V̂ti−1
(Θ)− κ

(
θ − V̂ti−1

(Θ)
)

hi


 , (15)

hi = ti − ti−1, and g(·;0,Ωti(j, Θ)) is a bivariate normal density function with mean 0 and
variance-covariance matrix:

Ωti(j, Θ) =

[
V̂ti−1

(Θ)hi + jσ2
J ρvV̂ 0.5+γ

ti−1
(Θ)hi

ρvV̂ 0.5+γ
ti−1

(Θ)hi v2V̂ 2γ
ti−1

(Θ)hi

]
. (16)

Thus, the log-likelihood function corresponding to the asset prices and the VIX indices
can be written as

L (Θ; Xt1 , · · · , XtN ) =
N∑

i=1

ln f
(
Ŷti(Θ)

∣∣Ŷti−1
(Θ); Θ

)
−N ln

(
1− e−κ∗τ

κ∗τ

)
, (17)

In the above, the first component of the right-hand side is the log-likelihood function asso-
ciated with (ln Sti , Vti) whereas the second component corresponds to the Jacobian for the
transformation from VIXt to Vt. Note that the above log-likelihood function has been de-
rived using the Euler discretization to equations (1) and (2). If hi is small such as a sample
of daily data, the discretization bias is expected to be negligible.

4 Empirical analysis

4.1 Data description

The data set consists of the S&P 500 index values, the CBOE’s VIX index values and the
risk-free rates on the daily frequency over the period from January 2, 1990 to December 29,
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2006. The VIX index measures the market’s expectation of the 30-day (or 22 trading days)
forward S&P 500 index volatility implicit in the index option prices. The CBOE launched
the VIX index in 1993 and switched to the new VIX index in September 2003. The VIX
index values used in this study are the new VIX index series provided by the CBOE.2 Our
proxy for the risk-free rate is the continuously compounded one-month LIBOR rate.

Table 1: Summary Statistics (January 2, 1990 – December 29, 2006)
S&P500 return VIX

Mean 0.00032 19.0566
Standard deviation 0.0099 6.4286
Skewness -0.1021 0.9840
Excess Kurtosis 3.9154 0.7975
Maximum 0.0557 45.7400
Minimum -0.0711 9.3100

Table 1 provides some basic statistics on the S&P 500 index returns and the VIX index
values. The index return is clearly negatively skewed and with heavy tails. Note that the
VIX index is stated as percentage points per annum. The summary statistics indicate that
based on the VIX index, the S&P 500 index return had about 19% annualized volatility over
the sample period. Volatility should be naturally skewed in the positive direction, which is
indeed the feature of the VIX index. The result shows that the VIX index also reveals a
minor degree of heavy tails. The stochastic volatility phenomenon is also fairly clear with
the volatility ranging from 9.3% to 45.7% over the sample period.

Figure 1 plots the time series of the S&P 500 and VIX indices over the 17-year period.
Added as a comparison is the S&P 500 index return’s realized volatility calculated from
the subsequent 22 trading days for which the VIX index is intended to measure. There
are several noticeable features. The market experienced a steady run-up in the 90’s, and
became jittery towards the end of 90’s. Then the Dot-Com bubble burst which brought
down the market until its recovery in 2003. Since then the market volatility has been in
a steady decline until reaching the middle of 2006 with a noticeable spike. Comparing the
VIX index to the realized volatility reveals an interesting and important fact; that is, the
VIX has consistently been higher than the realized volatility throughout the sample period.
Since the VIX index is meant to be the risk-neutral expected realized volatility, it suggests

2The old VIX index (the current ticker symbol is VXO) uses 8 implied volatilities of S&P 100 (OEX)
options to approximate a hypothetical at-the-money OEX option with 30 days to maturity. The new VIX
index is constructed by all valid out-the-money S&P 500 index (SPX) calls and puts. Both data series (VIX
and VXO) are available on the CBOE’s website. The new VIX tracks VXO reasonably closely, but the new
VIX index tends to be slightly lower based on a chart in the CBOE’s white paper.
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Figure 1: The S&P 500 index, the VIX index and the Corresponding Realized Volatility
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that the volatility dynamic under the risk-neutral pricing measure must be different from
that under the physical probability measure. In other words, the volatility risk has mostly
likely been priced by the market.

4.2 Empirical results

Table 2 summarizes our maximum likelihood estimation and inference results on three ver-
sions of the stochastic volatility model, where SV0 denotes the stochastic volatility model
with an unconstrained CEV parameter γ, SV1 is the Hull and White (1987) stochastic
volatility model with γ = 1, and SV2 corresponds to the Heston (1993) stochastic volatility
model with γ = 1/2. The parameter estimates along with their corresponding standard
errors inside the parentheses are reported in this table. LR denotes the likelihood ratio test
statistic with its corresponding p value given inside the parentheses.

When the CEV parameter γ is unconstrained (SV0), its estimate is 0.9141 for the entire
data sample. Using sub-samples, the estimates range from 0.9534 to 0.9825. These estimates
indicate that the popular square-root specification for the volatility dynamic is strongly at
odd with the data, whereas γ = 1, a specification adopted in Hull and White (1987), appears
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to be a better constraint to use. In comparison to the results reported in the literature, we
note that Jones (2003) has estimates from 0.84 to 1.5, Ait-Sahalia and Kimmel (1995) have
an estimate around 0.65, and Bakshi, Ju and Ou-yang (2006) have estimates from 1.2 to
1.5. The difference can of course be attributed to different methodologies and data samples.
With the exception of Ait-Sahalia and Kimmel (1995) perhaps, all results strongly point to
the inappropriateness of the square-root volatility specification. Using the formal likelihood
ratio test, we have found the square-root volatility specification (γ = 1/2) is resoundingly
rejected in all cases. In contrast, the stochastic volatility model with γ = 1 is rejected in the
whole data sample, but passed the likelihood ratio test at the 10% level in all sub-samples.

Surprisingly perhaps, the estimates for the volatility risk premium turn out to be fairly
stable and highly significant in all cases. The estimated volatility risk premium is negative,
a result reflective of the fact that the VIX index has been higher than the corresponding
realized volatility as shown in Figure 1. In fact, the magnitude of the estimated volatility
risk premium is so large that it makes the volatility process not to be mean-reverting under
the risk-neutral probability measure (i.e., κ∗ < 0) even though the volatility process under
the physical probability measure is mean-reverting.

The correlation between the price and volatility innovations is found to be significantly
negative, a well-known empirical fact. The conclusion is robust over different models and
data periods, and the estimates are fairly stable as well. An interesting issue to note is
the estimated mean jump is positive, meaning that jumps are on average in the positive
direction. As a controlled comparison, we forced the correlation between the price and
volatility innovations to zero and re-estimated the jump model. The result indicates a
negative mean jump. By allowing a correlation between the price and volatility innovations,
we have in effect removed the negative return asymmetry in returns. We can therefore
conclude that the appearance of negative jumps can be induced when one fails to properly
remove the effect of stochastic volatility.

Table 3 summarizes the maximum likelihood estimation results for the stochastic volatil-
ity models with jumps on the whole data sample. We denote the model with an unconstrained
γ by SVJ0. The model corresponding to γ = 1 is SVJ1 and the one corresponding to γ = 1/2
is SVJ2. The reported results clearly indicate the presence of jumps. The estimates asso-
ciated with jumps – λ, µJ and σJ – are significant in all cases. The log-likelihood value
increases substantially moving from SV0 to SVJ0. Although the table does not provide the
likelihood ratio test statistic on the presence of jumps, the difference in the log-likelihood
values clearly reveals that the test based on 4 degrees of freedom (four more parameters)
would be highly significant. This finding is consistent with Bates (2000), Anderson, Benzoni
and Lund (2002), Pan (2002) and Eraker, Johannes and Polson (2003). Our jump intensity
estimate indicates 82 price jumps per annum (based on SVJ0). As compared to the results
in Bate (2002), Pan (2002) and Eraker (2004), our result implies more frequent small jumps
because their estimates are from 3 to 27 jumps per year.

The volatility risk premium continues to be significantly negative and reasonably stable
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across models. For the jump risk premium, the results are quite different. In the case of the
model with an unconstrained γ (SVJ0) and that with γ = 1 (SVJ1), the jump risk premium is
significantly negative. But in the case of square-root volatility specification (SVJ2), the jump
risk premium becomes positive and insignificant, suggesting that the jump risk premium
is sensitive to how the stochastic volatility process is specified. The log-likelihood value
for SVJ2 is so much smaller than that of SVJ0, suggesting that the square-root volatility
specification with the presence of price jumps continues to be resoundingly rejected based on
the likelihood ratio criterion. The model specification used by Pan (2002) and Eraker (2004)
thus appears to be at odd with the data. Jones (2003) argued that the volatilities generated
from the square-root volatility process are too smooth to reconcile with the reality. By
introducing jumps, the burden on the stochastic volatility to generate returns on extreme
tails is significantly lessened, but it appears to be not enough to just allow for smooth
stochastic volatilities. This is not at all surprising, however, knowing that the VIX index
has been volatile throughout the sample period. Without the VIX data, jumps can perhaps
alleviate the deficiency associated with the square-root volatility specification. In a way, the
presence of the VIX series refutes the square-root volatility specification simply because such
a dynamic is at odd with the time series feature of the VIX index.

Tables 4, 5 and 6 respectively summarize the maximum likelihood estimation results
for the stochastic volatility models with jumps on three sub-samples. The main findings
for the whole sample continue to be valid in three sub-samples, suggesting that our earlier
conclusions are quite robust. The parameter estimates for the jump component are significant
in all cases but their magnitudes depend on the sample used. The jump risk premium is
found not to be significant in sub-samples although their signs remain negative which is
consistent with the result on the whole sample.

5 Conclusion

We have devised a new method to estimate the stochastic volatility model with/without
jumps via the use of the VIX index. Applying the method to the data sample of the S&P 500
index and the VIX index over a period of 17 years, we have obtained the following findings:
1) incorporating a jump risk factor is critically important; (2) the jump and volatility risks
are priced; and (3) the popular square-root stochastic volatility process is a poor model
specification irrespective of allowing for price jumps or not.

Our estimation method is based on the transformed data technique, which in its present
form can only accommodate one VIX-like data series. Although the CBOE has only produced
the VIX series for the 30-day maturity, it is conceivable that one can generate another VIX
for, say, the 90-day maturity and add it to the data set for analysis. Conceptually, using
several VIX’s corresponding to different maturities can help better pin down the risk-neutral
price and volatility dynamics. This is certainly an area deserving further exploration.
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Table 2: Maximum Likelihood Estimation Results for Stochastic Volatility Models

q κ θ v ρ γ δS κ∗ δV LR

Sample period: 1990/1/2 − 2006/12/29

SV0 -0.0499 1.5730 0.0311 1.4826 -0.6787 0.9141 -0.4166 -10.7051 -12.2781

(0.0385) (0.6405) (0.0113) (0.0565) (0.0060) (0.0117) (2.1312) (0.5041) (0.6339)

SV1 -0.1167 0.0164 1.3751 1.9697 -0.6772 1 -3.6972 -11.9005 -11.9169 23.5638

(0.0407) (0.5755) (48.1698) (0.0204) (0.0061) (2.1168) (0.4256) (0.6086) (p < 0.01)

SV2 0.0887 5.5222 0.0262 0.3831 -0.6574 1/2 5.2136 -5.5810 -11.1032 975.76454

(0.0259) (0.5039) (0.0024) (0.0069) (0.0069) (2.1465) (0.5630) (0.6850) (p < 0.01)

Sample period: 1990/1/2 − 1995/12/29

SV0 -0.1311 3.0107 0.0169 2.1952 -0.5499 0.9827 -7.0219 -13.1478 -16.1586

(0.0677) (1.4468) (0.0067) (0.2446) (0.0133) (0.0304) (6.1019) (0.9775) (1.2648)

SV1 -0.1380 2.6131 0.0179 2.3439 -0.5499 1 -7.6747 -13.4143 -16.0274 0.1806

(0.0677) (1.2288) (0.0080) (0.0373) (0.0133) (6.0921) (0.7857) (1.2408) (p = 0.67)

SV2 -0.0123 7.4908 0.0183 0.3495 -0.5268 1/2 0.0281 -6.8919 -14.3827 265.2769

(0.0515) (1.1096) (0.0027) (0.0115) (0.0141) (5.7508) (1.0534) (1.3469) (p < 0.01)

Sample period: 1996/1/2 − 2000/12/29

SV0 -0.2837 0.5674 0.1218 1.7260 -0.7512 0.9534 -6.4322 -9.3486 -9.9160

(0.1291) (1.4202) (0.2672) (0.1681) (0.0093) (0.0355) (4.3871) (1.0086) (1.1206)

SV2 -0.3319 0.0215 2.2824 1.9825 -0.7512 1 -7.6197 -9.8729 -9.8945 1.4046

(0.1166) (1.1480) (21.2755) (0.0573) (0.0092) (3.9205) (0.8033) (1.0802) (p = 0.24)

SV2 -0.0520 6.1297 0.0360 0.4467 -0.7317 1/2 1.7280 -4.9276 -11.0574 224.6914

(0.0698) (1.0077) (0.0059) (0.0140) (0.0104) (3.6582) (0.9386) (1.1891) (p < 0.01)

Sample period: 2001/1/2 − 2006/12/29

SV0 0.0153 1.9877 0.0266 1.6738 -0.7701 0.9662 -0.0044 -8.7431 -10.7309

(0.0625) (1.0929) (0.0117) (0.0765) (0.0101) (0.0165) (2.8592) (1.0387) (1.1467)

SV1 0.0027 1.3327 0.0313 1.8632 -0.7695 1 -0.2373 -9.2721 -10.6049 2.3682

(0.0570) (0.9107) (0.0199) (0.0379) (0.0101) (2.6204) (0.8917) (1.1199) (p = 0.12)

SV2 0.2175 5.7710 0.0305 0.4031 -0.7207 1/2 6.8256 -1.7986 -7.5697 636.1014

(0.0370) (0.8136) (0.0046) (0.0160) (0.0135) (3.1963) (1.2489) (1.4362) (p < 0.01)

Note: SV0 denotes the stochastic volatility model with unconstrained γ; SV1 denotes the stochastic
volatility model with γ = 1; SV2 denotes the stochastic volatility model with fixed γ = 1/2. The
standard errors are inside the parentheses. The volatility risk premium δV is computed as κ∗ − κ
and its standard error follows from the standard calculation. LR denotes the likelihood ratio test
statistic with its corresponding p value.
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Table 3: Maximum Likelihood Estimation Results for the Stochastic Volatility Models with
Jumps (the Whole Sample)

SV0 SVJ0 SVJ1 SVJ2

q -0.0499 -0.0462 -0.0384 -0.0389

(0.0385) (0.0508) (0.0568) (0.0379)

κ 1.5730 2.5092 2.2654 3.0025

(0.6405) (0.9208) (0.9282) (0.6463)

θ 0.0311 0.0227 0.0240 0.0218

(0.0113) (0.0058) (0.0063) (0.0043)

λ 82.1814 46.2522 100.5712

(13.4456) (8.7741) (12.8075)

µJ(%) 0.2925 0.4114 0.1653

(0.0465) (0.0719) (0.0307)

σJ(%) 0.5838 0.7207 0.5364

(0.0347) (0.0459) (0.0319)

v 1.4826 1.3587 1.9272 0.3625

(0.0565) (0.0548) (0.0208) (0.0062)

ρ -0.6787 -0.7915 -0.7779 -0.7524

(0.0060) (0.0089) (0.0084) (0.0084)

γ 0.9141 0.8816 1 1/2

(0.0117) (0.0116)

δS -0.4166 -0.4256 -0.0042 0.3522

(2.1312) (2.6864) (2.8262) (2.4268)

κ∗ -10.7052 -12.8872 -14.6401 -9.7069

(0.5041) (0.5551) (0.5122) (0.5945)

φ∗(%) 0.0350 -0.1354 0.2523

(0.0326) (0.0331) (0.0384)

δV -12.2781 -15.3964 -16.9056 -12.7094

(0.6339) (1.0160) (0.9807) (0.8746)

δJ(%) -0.1407 -0.2953 0.0936

(0.0604) (0.0610) (0.0546)

Log-Lik 37313.0192 37463.93725 37452.8324 37067.0472

Note: The reported estimates for µJ , σJ , φ∗ and δJ have been multiplied by
100. SVJ0 denotes the stochastic volatility model with jumps and an uncon-
strained γ; SVJ1 denotes the stochastic volatility model with jumps and γ = 1;
SVJ2 denotes the stochastic volatility model with jumps and γ = 1/2. δV and
δJ are computed by κ∗ − κ and φ∗ − λ(eµJ+σ2

J/2 − 1 − µJ), respectively, and
their standard errors follow from the standard calculation.
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Table 4: Maximum Likelihood Estimation Results for the Stochastic Volatility Models with
Jumps (Sample Period: 1990/1/2 – 1995/12/29)

SVJ0 SVJ1 SVJ2
q -0.0351 -0.0306 -0.0964

(0.0794) (0.0809) (0.0412)
κ 2.4165 2.4548 5.0656

(2.4145) (2.4431) (1.4423)
θ 0.0189 0.0187 0.0128

(0.0129) (0.0125) (0.0036)
λ 25.0972 24.3863 53.8559

(8.3344) (8.2510) (12.7624)
µJ(%) 0.9321 0.9431 0.2645

(0.1462) (0.1505) (0.0791)
σJ(%) 0.0603 0.0562 0.6261

(0.4862) (0.5433) (0.0695)
v 2.0315 2.3341 0.3607

(0.2608) (0.0380) (0.0114)
ρ -0.6465 -0.6468 -0.6374

(0.0168) (0.0168) (0.0180)
γ 0.9635 1 1/2

(0.0328)
δS -0.0211 -0.1051 -0.0907

(7.7812) (7.8709) (5.2670)
κ∗ -17.1315 -17.6932 -8.7684

(1.0321) (0.8904) (1.1469)
φ∗(%) 0.0092 -0.0234 0.2605

(0.0638) (0.0584) (0.0477)
δV -19.5480 -20.1480 -13.8341

(2.5257) (2.4588) (1.7453)
δJ(%) -0.1005 -0.1326 0.1357

(0.0878) (0.0825) (0.0769)
Log-Lik 13785.3385 13784.4074 13686.8489

Note: The reported estimates for µJ , σJ , φ∗ and δJ have been mul-
tiplied by 100. SVJ0 denotes the stochastic volatility model with
jumps and an unconstrained γ; SVJ1 denotes the stochastic volatil-
ity model with jumps and γ = 1; SVJ2 denotes the stochastic volatil-
ity model with jumps and γ = 1/2. δV and δJ are computed by κ∗−κ

and φ∗−λ(eµJ+σ2
J/2−1−µJ), respectively, and their standard errors

follow from the standard calculation.
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Table 5: Maximum Likelihood Estimation Results for the Stochastic Volatility Models with
Jumps (Sample Period: 1996/1/2 – 2000/12/29)

SVJ0 SVJ1 SVJ2
q -0.0029 0.1220 0.0002

(0.1749) (0.1659) (0.1195)
κ 5.0226 6.4439 6.7005

(1.9356) (1.9163) (1.6097)
θ 0.0316 0.0289 0.0278

(0.0064) (0.0045) (0.0049)
λ 83.3850 89.3408 193.2140

(31.5592) (32.2494) (51.6809)
µJ(%) 0.2388 0.2286 0.1651

(0.0894) (0.0841) (0.0485)
σJ(%) 0.7213 0.7036 0.5150

(0.0878) (0.0821) (0.0518)
v 2.0922 1.9266 0.4283

(0.3042) (0.0595) (0.0144)
ρ -0.8377 -0.8395 -0.8314

(0.0159) (0.0159) (0.0154)
γ 1.0310 1 1/2

(0.0547)
δS 2.7338 8.4133 3.8556

(6.4255) (6.1649) (5.2990)
κ∗ -14.6516 -14.1660 -9.0575

(1.3586) (1.0441) (1.1278)
φ∗(%) -0.4935 -0.5040 0.1872

(0.1689) (0.1142) (0.1064)
δV -19.6743 -20.6100 -15.7580

(2.0562) (1.9535) (1.7552)
δJ(%) -0.7348 -0.7490 -0.0958

(0.2482) (0.1922) (0.1679)
Log-Lik 10408.3277 10407.9546 10304.2353

Note: The reported estimates for µJ , σJ , φ∗ and δJ have been mul-
tiplied by 100. SVJ0 denotes the stochastic volatility model with
jumps and an unconstrained γ; SVJ1 denotes the stochastic volatil-
ity model with jumps and γ = 1; SVJ2 denotes the stochastic volatil-
ity model with jumps and γ = 1/2. δV and δJ are computed by κ∗−κ

and φ∗−λ(eµJ+σ2
J/2−1−µJ), respectively, and their standard errors

follow from the standard calculation.
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Table 6: Maximum Likelihood Estimation Results for the Stochastic Volatility Models with
Jumps (Sample Period: 2001/1/2 – 2006/12/29)

SVJ0 SVJ1 SVJ2
q 0.0004 -0.0180 0.0319

(0.0812) (0.0841) (0.0534)
κ 1.7367 2.6626 2.9840

(1.3290) (1.3265) (0.9519)
θ 0.0291 0.0212 0.0213

(0.0162) (0.0069) (0.0069)
λ 24.3230 18.5726 288.2319

(13.7381) (12.4050) (60.9738)
µJ(%) 0.6452 0.7915 0.1003

(0.3833) (0.5472) (0.0279)
σJ(%) 0.6303 0.6892 0.3216

(0.1718) (0.2575) (0.0377)
v 1.6638 1.8396 0.3761

(0.1025) (0.0372) (0.0137)
ρ -0.8200 -0.8178 -0.7987

(0.0118) (0.0117) (0.0127)
γ 0.9627 1 1/2

(0.0228)
δS -0.5198 -0.1991 1.1725

(3.5663) (3.6307) (3.5289)
κ∗ -9.9338 -10.7613 -7.3038

(1.1248) (0.9512) (1.1569)
φ∗(%) 0.0117 -0.0620 0.3274

(0.0549) (0.0429) (0.0388)
δV 11.6706 -13.4240 -10.2878

(1.6704) (1.5430) (1.4932)
δJ(%) -0.0876 -0.1648 0.1637

(0.1196) (0.1289) (0.0767)
Log-Lik 13435.4140 13435.3897 13186.0219

Note: The reported estimates for µJ , σJ , φ∗ and δJ have been mul-
tiplied by 100. SVJ0 denotes the stochastic volatility model with
jumps and an unconstrained γ; SVJ1 denotes the stochastic volatil-
ity model with jumps and γ = 1; SVJ2 denotes the stochastic volatil-
ity model with jumps and γ = 1/2. δV and δJ are computed by κ∗−κ

and φ∗−λ(eµJ+σ2
J/2−1−µJ), respectively, and their standard errors

follow from the standard calculation.
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